
User- and Query- Dependent Ranking for
Searching Technical Papers

Manish R. Jansari1, Prof. P. M. Chawan2
1,2 CE & IT Department

Veermata Jijabai Technological Institute,
Mumbai- 19, India

Abstract- In the era of Internet where millions of people
browsing over millions of websites; searching for web
databases such as Product database, Locomotive database etc.
have become a routine task. Ranking and returning the most
relevant result of a query based on the type of user is
important in this aspect. Previous approaches have used
values of database frequencies, user profiles and queries.
Thus the ranking was done in a user- and /or query-
independent manner. A new approach known as User and
Query Dependent Ranking for giving ranking to query results
can be useful in this context. This ranking framework is based
on two fundamental aspects to the problem of ranking query
results. They are query similarity and user similarity. These
similarities are exploited to make efficient ranking of query
results.

Keywords—Automated ranking, Recommendation
Systems, User similarity, Query similarity, Ranking query
results, Data Mining.

I. INTRODUCTION

The World Wide Web has more and more online Web
databases which can be searched through their Web query
interfaces. All the Web databases make up the deep Web
(hidden Web or invisible Web). Often the retrieved
information (query results) is enwrapped in Web pages in
the form of data records. These special Web pages are
generated dynamically and are hard to index by traditional
crawler-based search engines, such as Google and Yahoo.
These kind of special Web pages are often called as deep
Web pages. [1]
Data mining is the process of extracting novel, interesting
and useful patterns from usually large-scale data. Data
mining is used in a wide range of industries - including
retail, finance, health care, manufacturing transportation
etc.

The World Wide Web and its associated
distributed information services, such as Yahoo!, Google,
AltaVista, provide rich, worldwide, on-line information
services,[2] where data objects are linked together to
facilitate interactive access. Users seeking information of
interest traverse from one object via links to another. Such
systems provide ample opportunities and challenges for
data mining. For example, understanding user access
patterns will not only help improve system design but also
leads to better marketing decisions (e.g., by placing
advertisements in frequently visited documents, or by
providing better customer/user classification and behavior
analysis). Capturing user access patterns in such distributed

information environments is called Web usage mining (or
Weblog mining) [2].
The web databases are from various domains such as
product, locomotive, education, health care and so on.
These web databases are searched by online users through a
search mechanism provided. The queries can have criteria
that correspond to the attributes of the database schema.
When results returned are huge in number, user time gets
wasted in brewing for required information.
To overcome this problem the present web databases
simplify the results by sorting them in a particular attribute.
This may not be suitable to the requirements of many users
who prefer ordering on multiple attributes. Many existing
web databases follow simple sorting for ranking while the
extension of SQL allows providing attribute weights [3].
For most web databases this approach is not user friendly
and time consuming for users as most of the time needs to
be spent in browsing the query results. For this reason an
automated ranking of query results is studied and some
techniques are proposed in [4]. These approaches are either
user query dependent or user dependent way of ranking
query results. Another approach which is used to build
extensive user profiles and in that case users are supposed
to order the records, this approach is proposed for user-
dependent ranking and that do not differentiate the
difference between different queries and provide a single
ranking order for any query. Even recommender systems
made use of either user similarity or query similarity. Some
of them are collaborative in nature and some of them are
content based filters.

II. RELATED WORK

Although there was no notion of ranking in traditional
databases, it has existed in the context of information
retrieval for quite some time. With the advent of the Web,
ranking gained prominence due to the volume of
information being searched/ browsed. Currently, ranking
has become ubiquitous and is used in document retrieval
systems, recommender systems, Web search/browsing, and
traditional databases as well [6].

2.1 Ranking in Recommendation Systems:
Most existing recommender systems can be classified into
two categories: collaborative filtering and content-based
filtering. Hybrid recommender systems combine the
advantages of the two for improved recommendation
performance. Traditional recommender systems are rating-
based. However, predicting ratings is an intermediate step

Manish R. Jansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3438-3442

www.ijcsit.com 3438

towards their ultimate goal of generating rankings or
recommendation lists.

i) Collaborative filtering
Collaborative filtering methods are based on collecting and
analyzing a large amount of information on users’
behaviors, activities or preferences and predicting what
users will like based on their similarity to other users. A
key advantage of the collaborative filtering approach is that
it does not rely on machine analyzable content and
therefore it is capable of accurately recommending
complex items such as movies without requiring an
"understanding" of the item itself. Many algorithms have
been used in measuring user similarity or item similarity in
recommender systems. For example, the k-nearest
neighbor (k-NN) approach and the Pearson Correlation.

Collaborative Filtering is based on the assumption that
people who agreed in the past will agree in the future, and
that they will like similar kinds of items as they liked in the
past.

When building a model from a user's profile, a distinction
is often made between explicit and implicit forms of data
collection.
Examples of explicit data collection include the following:
 Asking a user to rate an item on a sliding scale.
 Asking a user to search.
 Asking a user to rank a collection of items from

favorite to least favorite.
 Presenting two items to a user and asking him/her to

choose the better one of them.
 Asking a user to create a list of items that he/she likes.
Examples of implicit data collection include the following:
 Observing the items that a user views in an online store.
 Analyzing item/user viewing times
 Keeping a record of the items that a user purchases

online.
 Obtaining a list of items that a user has listened to or

watched on his/her computer.
 Analyzing the user's social network and discovering

similar likes and dislikes

The recommender system compares the collected data to
similar and dissimilar data collected from others and
calculates a list of recommended items for the user. Several
commercial and non-commercial examples are listed in the
article on collaborative filtering systems.
One of the most famous examples of collaborative filtering
is item-to-item collaborative filtering (people who buy x
also buy y), an algorithm popularized by various online
shopping websites (like Amazon.com's) recommender
system.

ii) Content-based filtering
Content-based filtering methods are based on a description
of the item and a profile of the user’s preference. In a
content-based recommender system, keywords are used to
describe the items; beside, a user profile is built to indicate

the type of item this user likes. In other words, these
algorithms try to recommend items that are similar to those
that a user liked in the past (or is examining in the present).
In particular, various candidate items are compared with
items previously rated by the user and the best-matching
items are recommended. This approach has its roots
in information retrieval and information filtering research.
To abstract the features of the items in the system, an item
presentation algorithm is applied. A widely used algorithm
is the tf–idf representation (also called vector space
representation).
To create user profile, the system mostly focuses on two
types of information:
1. A model of the user's preference.
2. A history of the user's interaction with the recommender
system.
Basically, these methods use an item profile (i.e. a set of
discrete attributes and features) characterizing the item
within the system. The system creates a content-based
profile of users based on a weighted vector of item
features. The weights denote the importance of each
feature to the user and can be computed from individually
rated content vectors using a variety of techniques. Simple
approaches use the average values of the rated item vector
while other sophisticated methods use machine learning
techniques such as Bayesian Classifiers, cluster
analysis, decision trees, and artificial neural networks in
order to estimate the probability that the user is going to
like the item.
Direct feedback from a user, usually in the form of a like
or dislike button, can be used to assign higher or lower
weights on the importance of certain attributes.
A key issue with content-based filtering is whether the
system is able to learn user preferences from user's actions
regarding one content source and use them across other
content types. When the system is limited to
recommending content of the same type as the user is
already using, the value from the recommendation system
is significantly less than when other content types from
other services can be recommended. For example,
recommending news articles based on browsing of news is
useful, but it's much more useful when music, videos,
products, discussions etc. from different services can be
recommended based on news browsing.

iii) Hybrid recommender systems
Recent research has demonstrated that a hybrid approach,
combining collaborative filtering and content-based
filtering could be more effective in some cases. Hybrid
approaches can be implemented in several ways: by
making content-based and collaborative-based predictions
separately and then combining them; by adding content-
based capabilities to a collaborative-based approach (and
vice versa); or by unifying the approaches into one model.
Several studies empirically compare the performance of
the hybrid with the pure collaborative and content-based
methods and demonstrate that the hybrid methods can
provide more accurate recommendations than pure
approaches. These methods can also be used to overcome

Manish R. Jansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3438-3442

www.ijcsit.com 3439

some of the common problems in recommender systems
such as cold start and the sparsity problem.
Netflix is a good example of hybrid systems. They make
recommendations by comparing the watching and
searching habits of similar users (i.e. collaborative
filtering) as well as by offering movies that share
characteristics with films that a user has rated highly
(content-based filtering).
A variety of techniques have been proposed as the basis for
recommender systems: collaborative, content-based,
knowledge-based, and demographic techniques. Each of
these techniques has known shortcomings, such as the well
known cold-start problem for collaborative and content-
based systems (what to do with new users with few ratings)
and the knowledge engineering bottleneck in knowledge-
based approaches. A hybrid recommender system is one
that combines multiple techniques together to achieve
some synergy between them.
 Collaborative: The system generates recommendations

using only information about rating profiles for
different users. Collaborative systems locate peer users
with a rating history similar to the current user and
generate recommendations using this neighborhood.

 Content-based: The system generates recommendations
from two sources: the features associated with products
and the ratings that a user has given them. Content-
based recommenders treat recommendation as a user-
specific classification problem and learn a classifier for
the user's likes and dislikes based on product features.

 Demographic: A demographic recommender provides
recommendations based on a demographic profile of
the user. Recommended products can be produced for
different demographic niches, by combining the ratings
of users in those niches.

 Knowledge-based: A knowledge- based
recommender suggests products based on inferences
about a user’s needs and preferences. This knowledge
will sometimes contain explicit functional knowledge
about how certain product features meet user needs.

The term hybrid recommender system is used here to
describe any recommender system that combines multiple
recommendation techniques together to produce its output.
There is no reason why several different techniques of the
same type could not be hybridized, for example, two
different content-based recommenders could work
together, and a number of projects have investigated this
type of hybrid: NewsDude, which uses both naive Bayes
and kNN classifiers in its news recommendations is just
one example.
Seven hybridization techniques:
 Weighted: The score of different recommendation

components are combined numerically.
 Switching: The system chooses among

recommendation components and applies the selected
one.

 Mixed: Recommendations from different
recommenders are presented together.

 Feature Combination: Features derived from different
knowledge sources are combined together and given to
a single recommendation algorithm.

 Feature Augmentation: One recommendation technique
is used to compute a feature or set of features, which is
then part of the input to the next technique.

 Cascade: Recommenders are given strict priority, with
the lower priority ones breaking ties in the scoring of
the higher ones.

 Meta-level: One recommendation technique is applied
and produces some sort of model, which is then the
input used by the next technique.

Another important distinction apart from recommendation
systems is the notion of similarity. In content filtering, the
similarity between items is established either using a
domain expert, or user profiles, or by using a feature
recognition algorithm over the different features of an item
(e.g., author and publisher of a book, director and actor in a
movie, etc.). In contrast, since our framework requires
establishing similarity between actual SQL queries (instead
of simple keyword queries), the direct application of these
techniques does not seem to be appropriate. To the best of
knowledge, a model for establishing similarity between
database queries (expressed in SQL) has not received
attention.
In addition, a user profile is unlikely to reveal the kind of
queries a user might be interested in. Further, since we
assume that the same user may have different preferences
for different queries, capturing this information via profiles
will not be a suitable alternative.
The notion of user similarity used in our framework is
identical to the one adopted in collaborative filtering;
however, the technique used for determining this similarity
is different [6].
In collaborative filtering, users are compared based on the
ratings given to individual items (i.e., if two users have
given a positive/negative rating for the same items, then
the two users are similar).
In the context of database ranking, [6] propose a rigorous
definition of user similarity based on the similarity
between their respective ranking functions, and hence
ranked orders. Furthermore, their work extends user-
personalization using context information based on user
and query similarity instead of static profiles and data
analysis.

2.2 Ranking in Databases:
Although ranking query results for relational and Web
databases has received significant attention over the past
years, simultaneous support for automated users and query-
dependent ranking has not been addressed in this context.
For instance, address the problem of query dependent
ranking by adapting the vector model from information
retrieval, whereas do the same by adapting the probabilistic
model. However, for a given query, these techniques
provide the same ordering of tuples across all users.
Employing user personalization by considering the context
and profiles of users for user-dependent ranking in
databases has been proposed in [5]. A drawback in this

Manish R. Jansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3438-3442

www.ijcsit.com 3440

work is that it does not consider that the same user may
have varied ranking preferences for different queries.
The closest form of query- and user-dependent ranking in
relational databases involves manual specification of the
ranking function/preferences as part of SQL queries.
However, this technique is unsuitable for Web users who
are not proficient with query languages and ranking
functions. In contrast, our framework provides an
automated query- as well as user-dependent ranking
solution without requiring users to possess knowledge
about query languages, data models and ranking
mechanisms[6].

3.2 Proposed System Architecture:

II. PROBLEM DEFINITION AND ARCHITECTURE

3.1 Problem Definition:
While searching for technical papers by different types of
Users with large set of queries, the returned results should
be more relevant i.e. the results returned should be ranked
in a user- and query- dependent manner.
Users from different specializations (e.g. Computer
Engineering, Civil Engineering, Mechanical Engineering
etc...) search for technical papers.
Our goal is to provide most relevant results to these
different categories of users by categorizing the Users and
the Queries as well.

Fig.1. Proposed System Architecture

3.3 Steps to be followed in implementation:
Step 1: Studying the current suggested techniques.
Step 2: Preparing datasets.
Step 3: Determining the relevant attributes to split the
dataset.
Step 4: Developing the algorithm.
Step 5: Verify ranked results in real time.

3.4 Objectives:
1. Searching for Technical papers based on user given

keywords by providing most relevant results based
on user’s category.

VI. CONCLUSION AND FUTURE WORK

In this paper various ranking techniques are described
such as ranking in Collaborative, content-based and
hybrid recommendation systems.
Proposed architecture is also presented. We proposed a
system for searching Technical Papers on the web also
we proposed a user and query dependent solution for
ranking query results.
In future, to provide most relevant results, user history
can be considered for ranking the results.

Manish R. Jansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3438-3442

www.ijcsit.com 3441

ACKNOWLEDGMENT

I would like to thank all those people whose support and
co-operation has been a valuable asset during the course
of this Paper. I would also like to thank our Guide Prof.
P. M. Chawan for guiding me for completing this paper.

REFERENCES
[1] Wei Liu, Xiaofeng Meng, Member, IEEE, and Weiyi Meng,

Member, IEEE, “ViDE: A Vision-Based Approach for Deep
Web Data Extraction,” in IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO.
3, MARCH 2010.

[2] P.Ayyadurai, S.Jayanthi, “Automated Ranking for Web
Databases using K-Means Algorithm and UQDR Approach,”
International Conference on Research Trends in Computer
Technologies (ICRTCT - 2013), Proceedings published in
International Journal of Computer Applications® (IJCA) (0975
– 8887).

[3] A. Marian, N. Bruno, and L. Gravano, “Evaluating Top-k
Queries over Web-Accessible Databases,” ACM Trans.
Database.

[4] Weifeng Su, Jiying Wang, Qiong Huang, Fred Lochovsky,
“Query Result Ranking over E-commerce Web Databases,”
CIKM’06, November 5–11, 2006.

[5] G. Koutrika and Y. E. Ioannidis. Constrained optimalities in
query personalization. In SIGMOD Conference, pages 73–84,
2005.

[6] Aditya Telang, Chengkai Li, Sharma Chakravarthy, ―One Size
Does Not Fit All: Towards User- and Query-Dependent Ranking
For Web Databases, IEEE Transactions on Knowledge and Data
Engineering, 2012.

Manish R. Jansari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3438-3442

www.ijcsit.com 3442

